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Abstract

This paper proposes an integral method that uses local heating rates to evaluate the activation energy dependence on the extent of conversion.
The method leads to consistent results with those from a differential isoconversional technique while regular integral isoconversional technique
results in systematic errors in the activation energy with the extent of conversion. The method is validated from (1) simulated thermal analysis
curves for a single reaction model, (2) simulated thermal analysis curves involving in two parallel reactions, and (3) non-isothermal dehydration
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. Introduction

Model-free isoconversional methods are the most reliable
ethods for the calculation of activation energies of thermally
ctivated reactions. A large number of isoconversional meth-
ds have been proposed. Isoconversional techniques make it
ossible to estimate the activation energy of a process as a

unction of the extent of conversion,α. Analysis of the activa-
ion energy dependence onα provides important clues about
eaction mechanism[1–5]. It is noteworthy[1,6,7] that, if
he activation energy depends onα, the differential method
uggested by Friedman[8] gives values of the activation en-
rgy which differ from those obtained with integral isoconver-
ional methods such as FWO[9,10], Li–Tang[11], KAS [12]
nd Vyazovkin methods[13,14]. The reason is that integral

soconversional techniques assume constant values ofE and
even when the kinetic parameters depend on the extent of

onversion. This assumption obviously introduces some sys-
ematic error, ifE andA vary with α. This systematic error
oes not appear in the Friedman method, and the systematic

error of an integral isoconversional method can be estim
by comparing it against the Friedman method. Becaus
Friedman method employs instantaneous rate values
sensitive to experimental noise and tends to be numer
unstable[15], especially when the rate is estimated by num
ical differentiation of experimental data. This compariso
therefore more effectively performed on smoothed data
do not contain experimental noise.

Improved methods have recently been proposed to e
nate this systematic error. Vyazovkin[16] suggested a mo
ified integral non-linear isoconversional procedure (M
INT), in which the constancy of activation energyEα is
assumed for only a small segment,�α. When the seg
ment�α is small enough, this procedure leads toEα val-
ues practically equal to those obtained by the Fried
technique.

Budrugeac[17] proposed a differential non-linear is
conversional procedure (NL-DIF) to evaluate the activa
energy from non-isothermal data. This procedure also
the minimum condition used in MNL-INT procedure wh
�α → 0. When the activation parameters change withα, Eα
∗ Corresponding author. Tel.: +86 27 67842752; fax: +86 27 67842752.
E-mail address:tangmailbox@126.com (T. Wanjun).

evaluated by the NL-DIF method is equal to that by the Fried-
man and MNL-INT procedures.
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Both NL-DIF and MNL-INT procedures make use of nu-
merical iterations to findEα values that satisfy the minimum
condition suggested by Vyazovkin[13]. This paper presents
a local linear integral isoconversional procedure (LL-INT)
for evaluation of activation energy dependence under non-
isothermal conditions. The result is in agreement with that of
Friedman method performed on simulated data that do not
contain experimental noise.

2. Theoretical considerations and calculation
procedure

The relationship between rate of reaction and extent of
reaction is generally expressed in the form:

dα/dt = A exp(−E/RT)f (α) (1)

whereα is the extent of conversion,t the time,T the temper-
ature,A the pre-exponential factor,E the activation energy,
R the gas constant andf(α) the differential reaction kinetic
model, in whichA, E, f(α) are called the kinetic triplet of
a reaction. A non-isothermal solid-state reaction with a pro-
grammed linear heating rateβ is considered. As in all isocon-
versional methods, it is assumed that the reaction model is
independent of the heating rate, but both the activation energy
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If δ is small enough, taking the first two terms from Eq.(5),
we obtain

P(x)|x+δ
x−δ = 2δ exp(−x)[1 + (1/6)δ2 x−4(1 − 2x)] (6)

let δ =kx, in whichk denotes a small deviation fromx. Eq.
(6) becomes

P(x)|x+δ
x−δ = 2δ exp(−x)[1 + (k/x)2(1 − 2x)/6] (7)

In Eq. (7), the term (k/x)2(1− 2x)/6 can be considered as a
correction term with respect to the approximation developed
previously[20–22]. That is

P(x)|x+δ
x−δ = 2δ exp(−x) (8)

If the segment [α− �α, α +�α] is small enough,
Tα +�α +Tα − �α ≈ 2Tα. Taking into account the fact that
δ =R(Tα +�α −Tα − �α)/2Eα, k= (Tα +�α −Tα − �α)/2Tα Eq.
(7) takes the following form:∫ Tα+�α

Tα−�α

exp(−Eα/RT ) dT

= (Tα+�α − Tα−�α)(1 + a) exp(−Eα/RTα),

α = (1/24)[Eα(Tα+�α − Tα−�α/RT 2
α ]

2
(1− 2RTα/Eα) (9)

Rearranging Eq.(9), and taking the logarithms of both sides,
o
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and pre-exponential factorA are dependent on the conv
ion α. The local heating rate[18,19] may deviate fromβ,
owever, for only a small segment [α− �α, α +�α], βα, Eα

ndAα may be assumed constant. Integrating Eq.(1)with the
imits Tα − �α andTα +�α, one gets

g(α)|α+�α
α−�α = Aα

βα

∫ Tα+�α

Tα−�α

exp(−Eα/RT ) dT (2)

hereg(α) is the integral reaction kinetic model. LetP(x) =
x

0 exp(−1/x) dx, in which x=RT/E. Taylor series of th
unctionP(x+ δ) andP(x− δ) around the pointx is devel-
ped to calculate the integral:

(x + δ) =
∞∑

n=0

(P (n)(x)/n!) δn (3)

(x − δ) =
∞∑

n=0

(P (n)(x)/n!)(−1)nδn (4)

n Eqs.(3) and (4),

P (1)(x) = exp(−1/x), P (2)(x) = x−2 exp(−1/x),

P (3)(x) = x−4(1 − 2x) exp(−1/x)

q. (3) being subtracted from Eq.(4), one obtains

P(x + δ) − P(x − δ)

= 2δ exp(−1/x) + (1/3)δ3 x−4(1− 2x) exp(−1/x) + · · ·
(5)
ne gets Eq.(10):

ln((βα/(Tα+�α − Tα−�α))(1/(1+ a)))

= ln Aα − ln[g(α)]α+�α
α−�α − Eα/RTα (10)

q. (10) is the basis of local linear integral isoconversio
ethod (LL-INT). According to the isoconversional pr

iple, the reaction rate at a constant conversion dep
nly on the reaction temperature. Also, values of lnAα −

n[g(α)]α+�α
α−�α will be the same asα and�α. To solve Eq

10), the following iterative procedure is proposed.

I. For a= 0, plotting ln(βα/(Tα+�α − Tα−�α)) versus
1/RTα, activation energyE(1)

α is obtained from the slop
of the line.

II. E
(1)
α being introduced into Eq.(10), the value ofa is cal-

culated. Plotting ln((βα/(Tα+�α − Tα−�α))(1/(1+ a)))
versus 1/RTα, activation energyE(2)

α is obtained from th
slope of the line.

II. Let E
(2)
α replaceE(1)

α and repeat procedure II until

E(1)
α − E(2)

α | < ε (11)

here ε is preset as the iteration accuracy, which
.001 kJ/mol for the calculations in this paper. The valu
nal Eα is determined. If the segment [α− �α, α +�α] is
mall enough, i.e.�α → 0, this method will lead toE values
ractically equal to those obtained by the differential isoc
ersional method.

The inaccuracy in approximations for temperature inte
s one of the main sources of error involving the isocon
ional methods[23]. The values ofP(x) over small interval
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Fig. 1. Surface plot of the percent deviation of Eqs.(7) and (8)(plots A
and B refer to Eqs.(7) and (8), respectively) from numerical results of the
integral intervalP(x)|x+δ

x−δ, in whichδ =kx.

were calculated with Simpson’s rule. The relative percent er-
rors associated with the use of the approximate formula, Eq.
(8), along with Eq.(7) as a solution of the Arrhenius integral
for variousx (15≤ 1/x≤ 60, a physically realistic domain
of 1/x) over different small intervals (kx,k= 0.002–0.01) are
plotted inFig. 1. As shown inFig. 1, fork→ 0 and small val-
ues of 1/x, Eqs.(7) and (8)lead to values practically equal to
those obtained by the numerical integral method. For higher
values ofk and 1/x, the accuracy of Eq.(8) is very poor.
Therefore, the range of its applicability is localized to small
values ofk and 1/x. On the contrary, as for Eq.(7), increas-
ing the value ofk under constant 1/x, the percent deviation
from Simpson’s procedure increases slightly. This fact indi-
cates that the accuracy of Eq.(7) is high with large value of
k, which means that the influence of�α value on the kinetic
parameters is small. Eq.(7) is significantly more accurate
than Eq.(8) in all the range of 1/x.Fig. 1shows that Eq.(7)
is much superior to Eq.(8).

3. Simulations and comparison

Along with the LL-INT method, the Friedman (Eq.(12))
method and some regular integral isoconversional methods
(Tang[24], FWO, and KAS) for evaluating the activation en-
ergy are applied for process I (simulated data for a single reac-
t ns).
T are

•

•

• for FWO method

ln β = ln[AE/Rg(α)] − 5.331− 1.052E/RT (14)

• for KAS method

ln[β/T 2] = ln[AR/Eg(α)] − E/RT (15)

Activation energy of process I, as shown in Eq.(16), is
independent of the extent of conversion, which is simulated
by means of numerical integration. Process II, which is
simulated by means of the Runge–Kutta algorithm, describes
two parallel reactions of different reaction orders[16], as
shown in Eq.(17), each of which has significantly different
kinetic parameters. A strong variation in the apparent
activation energy may be observed for process II:

dα/dt = A1 exp(−E1/RT )(1 − α)n1 (16)

dα/dt = A1 exp(−E1/RT )(1 − α)n1

+ A2 exp(−E2/RT )(1 − α)n2 (17)

The parameters of Eqs.(16) and (17)are: n1 = 1, E1 =
200 kJ mol−1, A1 = 1016 min−1, n2 = 2, E2 = 100 kJ mol−1,
A2 = 108 min−1. Both of the processes have been simulated
for linear heating rates of 2, 4, 6, 8, and 10 K min−1.
Nonlinear interpolation has been employed to evaluate the
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ion) and process II (simulated data for two parallel reactio
he relationships that form the bases of these methods

for Friedman method

ln(dα/dt) = ln(A/f (α)) − E/RT (12)

for Tang method

ln[β/T 1.89466100]

= ln[AE/g(α)R] + 3.63504095− 1.89466100 lnE

− 1.00145033E/RT (13)
alues ofTα, Tα − �α, Tα +�α and (dα/dt)α used to evaluat
he activation energies from simulated data with Eqs.(16)
nd (17). The dependence of activation energy on
onversion degree for processes of I and II are display
igs. 2 and 3, respectively.

For process I, the activation energy does not vary
ificantly with the extent of conversion (Fig. 2). In this ca
riedman, LL-INT method, and regular integral methods

o almost identicalE dependence. The LL-INT techniq
ives rise to a slightly larger scatter in theE values becaus
L-INT technique involves more numerical calculations

ig. 2. E dependencies evaluated for the simulated process I by va
ethods.
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Fig. 3. E dependencies evaluated for the simulated process II by various
methods.

For process II, inFig. 3, theE dependence onα ob-
tained from regular integral methods deviates noticeably
from the Friedman method. However, theE dependence on
α yielded by the LL-INT method is practically identical to
that estimated by Friedman method. For a given value ofα,
EFR≈ELL-INT >ETang≈EFWO≈EKAS. The average relative
deviation of LL-INT method is 0.35% and the maximum rel-
ative deviation is 0.74%. The average relative deviation of
regular integral methods is about 6.0% and the maximum
relative deviation is 17.5%, which is in agreement with that
claimed[16] about 18%. The regular methods (Tang, FWO
and KAS) are based on the integration of the rate equation
for constantEα. That is the reason that forEα dependence on
α, only results of the LL-INT method is in agreement with
that of the Friedman method.

4. Experimental example

The thermal decomposition of CaC2O4·H2O was carried
out in a 20 ml min−1 flow of N2 at 5, 10, 15, and 20 K min−1

from room temperature (20) to 900◦C on a Setaram Setsys
TG/DTA/DSC16 thermal analyzer. The samples weight was
about 3 mg. The actual values of heating rates for the temper-
ature region of dehydration were obtained from the sample
t were
e
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Fig. 4. E dependencies evaluated for the dehydration process of
CaC2O4·H2O by various methods.

the difference is that the experimental data must be numeri-
cally differentiated to estimate activation energy by Friedman
method and numerical differentiation considerably lowers the
signal-to-noise ratio.

5. Conclusions

If the activation energy does not vary with the conver-
sion degree, LL-INT technique leads toE values identical
with those obtained by Friedman and regular integral tech-
niques. The systematic error of regular integration techniques
with the extent of conversion is eliminated with the LL-INT
method. The estimation of activation energy dependence for
dehydration of CaC2O4·H2O validated the method.
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